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Abstract 

The procedure of transition from classical observables to quantum (operator) observables 
in quantum mechanics is discussed. By an example it is shown that, even in simple cases, 
the method of self-adjoint extensions of formal differential expressions for defining 
physical observables as operators is not equivalent to the procedure of forming operator 
functions corresponding to these observables. This inequivalence is not a formal one but 
has physical consequences connected with the compatibility of observables. 

As is well known (see von Neumann, 1932), every observable o f  a quantum 
mechanical system is usually represented by a self-adjoint operator in the 
Hilbert space H of  states of  the system. Since some of  the observables [e.g., the 
energy E(pa, P2, P3)] can be functions of  other observables (e.g., momentum 
components  Pt,  P2, P3), the definition of  operator E(p l ,  P2, P3) in H may be 
regarded as forming an operator  function of  the operators Pl ,  P2, P3 given in H. 
Such a procedure of  giving operator sense to certain expressions (of  defining them 
as operators) is usually called the quantization postulate,  or correspondence 
principle in quantum mechanics. (As is known, some o f  the quantum systems 
may be regarded as counterpar t s -v ia  the correspondence p r inc ip l e -o f  classical 
systems described by quantities and relations similar to those in the quantum 
case.) Sometimes it is convenient to consider the set of  quantum mechanical 
observables as particular operator representations in a suitable Hilbert space 
of some abstract quantities obeying certain commutat ion relations (such as, 
for instance, the case of  coordinate and momentum).  The choice of a particular 
Hilbert space corresponds to a particular realization of  the quantum system. 

In cases when functions of  non-commuting operators are formed, their 
definition can be ambiguous owing to the order in which the non-commuting 
operators enter as factors in some products.  [A discussion of  this point  is 
given, for example, by  yon Neumann (1932) and by other authors. Our dis- 
cussion below does not  concern this type o f  ununiqueness.] 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 

161 



t62 TODOROV 

On the other hand, from the Schr6dinger equation (for instance, of a free 
particle with mass m) it is evident that energy E (or square of momentum p2) 
can be regarded on a suitable class of differentiable functions as the operator 

3 

E = -h2/2m ~ ~ 2/~x~ 
i=I  

and 
3 

p 2 = _ _ h 2  ~ 02/OXi 2 
i=1 

Then the operator corresponding to the quantum mechanical observable of 
energy (or square of momentum) could be considered in some cases also as a 
self-adjoint extension of E (or p2), defined on some dense domain in H. 
A similar method of extending formal symmetric differential expressions is 
frequently used in practical applications of quantum mechanics as another 
procedure of defining observables mathematically (see, for example, Wightmann, 
1964, Part II, §8; Kato, 1966, Chap. 5, §5). 

In the sequel, assuming the validity of some natural physical conditions, 
the inequivalence of the above two procedures is discussed. The application of 
one of them to a quantum mechanical example leads to compatible (commuting) 
observables while the other procedure defines incompatible (non-commuting) 
observables. 

A single quantum particle is considered, whose energy E(p, mi*) as a function 
of momentum p = {Pl, P2, P3} has the form 1 

3 

E(p, m*) = ~ pi2/2m *, rn 1. v~ m2* ~ m3,* m* > 0, i = 1, 2, 3 (1) 
i=1 

and the square of momentum p2 is given by 

pZ = p12 + p22 + p32 (2) 

The particle is moving in a bounded three-dimensional domain D (considered 
as an open set in the three-dimensional Euclidean space) which is a potential 
well with infinitely high walls. (The wave functions are zero on the boundary 
o of D.) Domain D is different from a parallelepiped with faces paralM to 
coordinate planes, and the boundary ~ is smooth. A physical realization of the 
above quantum mechanical situation can be the motion of a quasiparticle (an 
exciton, or a magnon, or an electron) in the periodic field of a non-isotropic 
crystal piece of the form D. The interaction with such a non-isotropic periodic 
field is described by introducing new "effective" masses m* of the particle 
(see Kittet, 1960). The motion is such that the quasiparticle is prevented from 
sticking to the surface of D. (The quasiparticle with effective masses m* can 
evidently exist only inside D.) This discussion is valid for values of p small 
enough and a crystal piece D large enough that the "dispersion law" E(p, rr~*) 
can be approximated ("effective mass approximation") by quadratic function 

1 The  quant i t ies  roT, i = I ,  2, 3 are considered as constants.  
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(t)  of "quasimomentum" p (see Kittel, 1960). In the sequel, equality (1) is 
postulated as an exact law. Consequently, in this approximation, the motion 
of the quantum particle can be described equivalently by the "quantization" 
of the motion of a classical particle with the Hamiltonian (1). 

According to yon Neumann (1932), the Hilbert space of states of the above 
quantum system can be realized as the set of all square integrable functions 
L2(D) defined on D. Let us denote by S 1 (or, respectively, $2) the formal 
differential expressions 

3 1 3 2 
& = Y , (3) 

i = 1 2rn i OYi 2 

3 32 
$2 = E (4) 

i=1 ~Xi 2 

As discussed above, - h  2S 1 (or, respectively, -h2S2) can correspond to the 
energy (or, respectively, square of momentum) of the quasiparticle if they are 
defined on suitable domains and then extended to linear self-adjoint operators 
in the Hilbert space/-/. Let us denote by S;, S~ the operators defined by (3) 
and (4), respectively, on the common domain C~(/)) consisting of all functions 
infinitely differentiable on D, vanishing on the boundary o of D, and continuous 
together with all their derivatives on D (the closure of/3). As any ~ [~ E C~(/3)] 
vanishes on o, so ~ may be (a priori) a physically interesting state of our quantum 
system. Thus, from physical considerations we assume that self-adjoint operators 
$1N and $2 N corresponding to the energy and square of momentum of the quasi- 
particle should be self-adjoint extensions of the (symmetric) operators S; and 
S~, respectively [i.e., domains of definition of S~,  SJ v should contain C~(D)]. 
The existence and uniqueness of such extensions is ensured by the following 
mathematical facts. For the operators S~, S'2 it is known (see Dunford and 
Schwartz,1963, Chap. XlV, 6, Theorem 25), that the closures S'1 and S~ of S; 
and S~, respectively, are setf-adjoint operators. Then, clearly, S'I (or, respectively, 
S~) is the unique self-adjoint extension of S' 1 (or, respectively, S~) because S~ 
(S~) is by definition the smallest closed extension ofS~ (S~) and at the same 
time its largest closed extension in virtue of the maximatity of any selgadjoint 
operator. The above-stated uniftueness gives the only possibility of defining 
yon Neumann°s observables Si N by equalities Si N - Si', j = 1, 2. Let us denote 
by S~ ° and $2 ° the operators defined by (3) and (4), respectively, on a 
common domain Co~(D) consisting of all infinitely differentiable in D 
functions with compact supports, contained in D. 

According to the general theorem proved by Denchev (1970) and applied to 
the present particular case, the Friedrich s self-adjoint extensions S~ F and S ~  
of the operators &o and S ° ,  respectively, do not commute 2 for the special 
choice of domain D. Furthermore, it is known (see Denchev, 1970 beginning 

2 Two self-adjoint operators are said to commute,  if their spectral resolutions commute,  
(see also yon Neumann, 1932). According to Denchev's theorem, $I  F and S= F commute 
if and only if D is a parallelepiped with faces parallel to coordinate planes. 
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of proof of Theorem I), that $1F (S~)  is an extension of S~ (S~), i.e., 

S1F D 81, 32 F ~ S; (5) 

Since any self-adjoint operator is closed, and ~'is the smallest closed extension 
of S], clearly 

Si F D ~.'D S/, ] = 1,2 (6) 

Using the proved uniqueness of ~.'as a self-adjoint extension of S/(6) becomes: 
S/F = S/D S]'. As a result (using the d e f i n i t i o n  Sj N ~ ~ - ; f  = 1, 2), self-adjoint 
operators $1N a n d  32 N corresponding to the energy and square of momentum 
do not commute, if one defines these operators by the procedure of self-adjoint 
extensions [and assume-from physical considerations-that their domains of 
definition contain C~(/3)]. 

One can follow another procedure of giving operator sense to the relations 
(1) and (2) as discussed above. Let Hbe  the Hilbert space of states corresponding 
to the physical system in consideration. For instance, H = Lz(D) or some other 
arbitrary realization of H. Suppose, three commuting self-adjoint operators 
Pl, Pz, P3 are defined in Hso that they are admissible as candidates for three 
components of the momentum of the quasiparticle. It is known (see Plesner, 
1965, Theorem 9.4.7) that Pa, P2, P3 can be regarded as operator functions of 
one and the same self-adjoint operator. If operator functions (1) and (2) are 
formed, (see Dunford and Schwartz, 1963, Chap. XII. 2, 8 Corollary), operators 
E(p, m*) and p 2 commute in any particular realization of H as functions of the 
same self-adjoint operator. 

Remark. In the particular realization H=  L2(D) operator functions 
E(p, m*) and p2 cannot, for instance, be defined on the set of functions 
C°°(D) by differential expressions (3) and (4). If this were the case, then 

* 2 . . . .  r t E(p, mi ) and p would be commuting self-adjolnt extensions of $I and S~, 
respectively, contrary to the above-proved non-commutativity of sN,] = 1, 2-- 
the unique self-adjoint extensions of Si',/' = 1, 2. 

So the two considered procedures of quantization of (1) and (2) are in 
general not equivalent. In quantum mechanics (see von Neumann, 1932), 
commutativity of two observables is equivalent to their compatibility. This 
has nontrivial physical consequences, e.g., occurrence (or absence) of 
uncertainty relations. 
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